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Intfroduction

TRNGs are essential building blocks of modern embedded
security systems

Enables various cryptographic algorithms, protocols and
secured implementations

ue randomness cannot be obtained via computational
methods

TRNGs derive its randomness from physical parameters

Security relies on the unpredictability and uniformity of the
random numbers

Image Source: Google Image



Entropy/ Noise Source: The only
component with non-deterministic
behaviour

Digitization Module: Converts analog
signals into a digital form
Post-processing: Improves the statistical
security characteristics of the raw
random numbers

Online tests: Detects failure in
generating raw random numbers

Total Failure Tests: Implemented for the
fast detection of the total breakdown of
the entfropy source

Total Failure
b
Tests Alarms
Noise | Digitizer Conditioning
Source (Optional)
Raw Data
Digital Noise Source
Health Tests
Alarm

Generic Architecture of a TRNG

— TRNG output data



Traditional TRNG Designs

Thermal noise, also known as Johnson-Nyquist noise [68], is infrinsic electronic noise which occurs
regardless of any applied voltage.

CMOS Designs:
* Noft preferred

[1] A low power, low voltage Truly Random Number Generator (TRNG) for EPC Gen2 RFID tag was for h'Qh speed
proposed and realized in in SMIC 0.18 um standard CMOS process applications
[4] Presents the design of a mixed-signal RNG IC suitable for integration with hardware cryptographic Not easily
systems portable to
FPGA families

Metastability is the most commonly used entropy source for both FPGA and ASIC TRNGs. TRNGs of this
type rely on the circuit symmetry to achieve unbiased outputs.

[3] Utilizes th
the low-levg

Source of Randomness:
Underlying Hardware
Architectural Events

2] Exploits the jitter of events propagating in a self-timed ring (STR) to generate random bit No external hardware i.e.
eqluences at a very high bit rate. Implemented using Altera and Xilinx FPGA SoC design

SIIRNG based on high-precision edge sampling. Implemented using Xilinx Spartan 6 and Intel
lone V FPGAs




TRNGs implemented using external hardware are susceptible to physical attacks

[7] Presents a contactless and local active attack on ring oscillators (ROs) based TRNGs using electromagnetic
fields. It is possible to lock them on the injected signal and thus to control the monobit bias of the TRNG output
even when low power electromagnetic fields are exploited

[8] A frequency injection attack which is able to destroy the source of entropy in ring-oscillator-based true random
number generators (TRNGs).

* |t would be desirable
to develop TRNG

On- the fly testing of TRNGs sources which are

A design methodology for embedded tests of entropy sources. available TC,) =
program without

[9] The proposed solution uses canary numbers which are an extra output resorting to an external

of the entropy source of lower quality. This enables an early-warning attack component

detection before the output of the generator is compromised.
. In-situ TRNG design

[10] .E.)e5|gn of on-the-fly tests based. on the attack effects. Uses an would also make

empirical design methodology consisting of two phases: collecting the

data under attack and finding a useful statistical feature.

physical attacks more
challenging




NIST SP 800-22 STATISTICAL TEST SUITE

Test Type Defect Detected

Frequency(Monobit)
Frequency within a block
Runs
Longest run of ones in a block
Binary Matrix Rank
Spectral

Non-overlapping template
matchings

Overlapping template matchings
Maurer’s Universal Statistical
Linear Complexity
Serial
Approximate Entropy
Cumulative Sums
Random excursions test

Random excursions variant

Too many zeros or ones
Too many zeros or ones in specific block sizes
Too many (or too few) runs of zeros or ones
Too many long runs of ones in specific block sizes
Linear dependence among fixed length substrings of original
Periodic features in the bitstream

Too many occurrences of non-periodic templates

Too many or too few occurrences of runs of ones
Too easy o compress bitstream without loss of information
Sequence not complex enough to be considered random
Non-uniform distribution of specific length words
Non-uniform distribution of specific length words
Random walk excursions away from zero too large
Too many visits of a random walk to a certain state

Too many total visits (across many random walks) to a certain
state



AlS 20/31 TESTS

Procedure A

test0 is executed once on a 65536*48 bit sequence followed by 257 repetitions of
testO through test5 on successive 20000 bit sequences

testO disjointedness test 65536 48-bit strings are collected, sorted. No two adjacent values should be equal
testl monhobit test The number of ones must be between 9654 and 10346

test2 poker test Distribution of 4 bit tuples checked for 15 degrees of freedom

test3 runs test Runs of 1, 2, 3, 4, 5, and 6 ones and zeros are checked for expected occurrences
test4 longest run test No single run can be larger than 34

test5 auto-correlation test | The overlap of the bit stream in the latter half of the sequence is compared to the

sequence with the largest overlap in the first half of the sequence.

Procedure B

Distribution tests are conducted for widths of 1, 2, 4, 8 bits on successive samples
followed by a single repetition of test 8 on a 256000 + 2560 bit sequence. Total
sample size is depends on sample content.

test6 uniform distribution | Test6a is a monobit test to ensure the number of ones is between 25% and 75% of
test total. Test6b is a special case of test 7 with a width of 2.
test7 homogeneity test Collect 10,000 occurrences of runs less than the given width and check for the
expected transition probabilities. Test7a corresponds to a width of 3, Test7b
corresponds to a width of 4.
test8 entropy estimation | Accumulate the nearest predecessor distance between byte values in a 256000 +

(Coron's test)

2560 bit sequence and calculate the empirical entropy.




Contributions

» TRNG derived from computer architecture, which thrives on the
randomness observed through the Hardware Performance Counters. HPC
event counters provide a cumulative count to the architectural events and

us proposed to be a high source of entropy.

It was also observed that the randomness was highest in the Least
Significant bits (LSBs) for the observed values from these counters.

» These event counter statistics over the monitored application along with
the background noise can only be observed at periodic intervals. In order
to increase the throughput of the overall random number generation, we

pair the proposed TRNG with a secured hash implementation using the
Keccak algorithm.




Hardware Performance counters

« Set of special purpose registers, present in most of microprocessor’s
Performance Monitoring Unit(PMU)

Store hardware and software events related to the execution of a program,
such as cache misses, retired instructions, retired branch instructions, etc.

« Type and number of hardware interrupts vary across different Instruction Set
Architectures(ISA)

« Various open-source tools can measure this HPC values: perf tools, PAPI,
Oprofile, Valgrind and many more



COMMAND LINE LINUX TOOLS

« perf:accesses and reads the HPC registers through the perf
event system call for Linux versions above 2.6.31.
Syntax:

perf stat -e <event name> -I <interval duratjon>

— vy = ITLAdl) e - -

|« mpstat: a utility that collects and displays information about
CPU/UtIlization and performance stafistics.
/proc/interrupts records the number of interrupts per
IRQ on the x86 architecture.

Image Source: Google Image:
[ J

fiskset: sets or retrieves the CPU affinity of a running process
given its PID (Process ID)




Monitoring the HPCs

user@user-HP: ~fHPC

File Edit View Search Terminal Help

« An infinite loop C code snippef was faken [
# time counts uynit events

Ond Q”O\Ned 'I'O run indeﬁni‘l‘ely 1.000345852 8,87,63,32,614 instructions
2.000603450 8,88,20,16,263 instructions Even.l. nome

3.000849907 8,87,76,06,492 instructions

* Various event counts such as instructions,
bus-cycles etc. were observed

Event
count

Measured the total number of interrupts
received per second

(Note: The experiment was performed on
a per-core approach)




NON-DETERMINISM IN HPCs

Source of Non-
Determinism:

Hardware Interrupts

Ideal case: The HPC events
Instructions gnd cpu-cycles
should report constant

-10° 107

o
c
|

# instructions
# cpu-cycles

= = = Mean Value = = = MNean Value
0 100 200 | 0 100 200
Obsenvation: The number of Time Interval (10ms) Time Interval (10ms)

) Fig: Performance counter events (i) instruction and (ii) cpu-cycles over the executable of infinite
U cycles is not constant |oop with 10ms+ interval of time

Significant amount of non-determinism is exhibited by these performance counters



Observation:

Whenever there is a surge
in the number of
interrupts, the count of
’rhe events also increase

/3

Validation:
There exists an association
between hardware interrupts
and HPC events.

\

Instructions

HPC EVENTS
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Fig: Effect of hardware interrupts on the HPC events (i) instructions and (ii) cpu-
cycles monitored over an infinite loop on different time instances
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PROPOSED TRNG DESIGN

Digital Noise Source

i Raw Random Internel Random
Hardware ! ,
! Hardware . Numbers Post-Processing Numbers
. , Performance
Architecture ! Module
Counters )
' Randommness Source  Entropy Extractor: Cryptographic Post-Processing

Online Tests Alarms




RANDOMNESS EXTRACTION USING HPCS

»*Selection of Least Significant Bits

Observed 500,000 instances of the performance counter events instructions and cpu-
cycles, and calculated the entropy for each bit position.

tropy of each bit position is not same for the binary sequences of the monitored
values

Entropy is highest with LSB while MSB is highly predictable

Transformation of the data to binary sequences and considered the last 91 bits for
further analysis

T: We empirically selected last 9 least significant bits for our experimental setup as for most of the events the last 9 bits

provide highest entropy values
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Choosing bits from the LSB

“*Selection of Least Significant Bits(Contd.)
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Fig: Entropy of each LSBs for HPC event (i) instructions, and (ii) cpu-cycles

Observation:
LSBs have the
highest
enfropy, and

as we move

towards the
MSBs, the

enfropy gets
reduced




Next-bit Test for HPC events

“*Selection of HPC events using Yao's Next-Bit Test

* |n order to estimate the probability, N sequences of an HPC event at N successive
intervals of fime were considered

Given first m-bits of the n possible bits for any sequence S(n, t), i.e., the sequence
S(m, 1) is already given (where m <n)

« According to Yao's Next Bit test,

is 0.5%6 (i.e., [Prm—O]— 0.5+ §), given the knowledge of S(m.,t), when 6 IS
negligible (with respect to the security parameter).

* No. of possibilities for S(m,t)= 2™



« |Consider the case m=4, i.e. first 4 bits
of the binary sequence is known

+Selection of HPC events using Yao's Next-Bit Test (Contd.)

* | Observed N = 500,000 values for the

events and estimated the 2* possible

combinations

probability

Estimated Value of Pr[b; = 0] Value of §

KKnown| Hardware Performance Counter Events Hardware Performance Counter Events
Bits lig lopsicpu-cycles|cache-misses|branches instructions|cpu-cycles|cache-misses|branches
0000 0.499119 0.483038 0.51192 0.000881 0.016962 |0.011926
0001 s 0.498508 0.510286 0.5 . 5| 0.001492 0.010286 0
0010 0.50388 0.499933 0.61523 |0.473591 0.00388 0.000067 0.11523 |0.026409
0011 0.503006 0.501612 0.538575 |(0.472271| 0.003006 0.001612 0.038575 |0.027729
0100 0.497589 0.500212 0.465892 | 0.494755 0.002411 0.000212 0.034108 | 0.005245
0101 0.501385 0.503288 0.499264 0.489194| 0.001385 0.003283 0.000736 0.010806
0110 0.497944 0.499307 0.49388 0.480069| 0.002056 0.000693 0.00612 0.019931
0111 0.497515 0.498644 0.545499 |0.529411| 0.002485 0.001356 0.045499 |0.029411
1000 0.501878 0.497065 0.532874 |0.480286| 0.001878 0.002935 0.032874 |0.019714
1001 0.509205 0.500564 0.325212 |0.473333| 0.009205 0.000564 0.174788 |0.026667
1010 0.503668 0.498804 0.588985 | 0.507633 0.003668 0.001196 0.088985 | 0.007633
1011 0.500938 0.500415 0.345577 |0.476785| 0.000938 0.000415 0.154423 |0.023215
1100 0.49932 0.504391 0.681509 |(0.483871 0.00068 0.004391 0.181509 |0.016129
1101 0.499705 0.499179 0.578446 |0.470919| 0.000295 0.000821 0.078446 |0.029081
1110 0.502052 0.501125 0.357142 (0.477891 0.002052 0.001125 0.142858 |0.022109
1111 0.500587 0.497146 0.437479 |0.481415| 0.000587 0.002854 0.062521 |0.018585

| Average § | 0.002236 | 0.001493 | 0.073995 [0.018411

randomness

Events instructions and cpu-cycles can act
as better candidate for source of

Table: Next-bit test for different HPC events for m = 4




Experimental Validation

* Results on TRNG output obtained from HPC Eventis

Processor Linux Version

AMD A10-8700P Radeon R6|Ubuntu with Kernel 4.13.0-36
Intel Core 17-7567U Ubuntu with Kernel 4.15.0-33

» Experiments were conducted on
ifferent processors

ccess to HPC events is available

to users with administrative Table: Experimental Setup for Validation of the proposed claim
privilege

Primitive events such as instructions, cpu-cycles, bus-cycles, cache-misses, branches
efc. were considered.



EXPERIMENTAL VALIDATION(Contd.)

NIST Test . : Intel . : : AMD :
instructions|cpu-cycles|cache-misses|instructions|cpu-cycles|cache-misses
Frequency PASS PASS FAIL PASS PASS FAIL
BlockFrequency PASS PASS FAIL PASS PASS FAIL
CumulativeSums PASS PASS FAIL PASS PASS FAIL
Runs PASS PASS FAIL PASS PASS FAIL
LongestRun PASS PASS FAIL PASS PASS FAIL
Rank PASS PASS PASS PASS PASS FAIL
FFT PASS PASS PASS PASS PASS FAIL
NonQuerlapping Template PASS PASS FAIL PASS PASS FAIL
Overlapping Template PASS PASS PASS PASS PASS FAIL
Universal PASS PASS FAIL PASS PASS FAIL
ApprozimateEntropy PASS PASS FAIL PASS PASS FAIL
RandomFExcursions PASS PASS FAIL PASS PASS FAIL
RandomFEzcursions Variant PASS PASS FAIL PASS PASS FAIL
Serial PASS PASS PASS PASS PASS FAIL
LinearComplexity PASS PASS PASS PASS PASS FAIL

Table: NIST Test Results on TRNG Output for Different HPC Events on two different processors




EXPERIMENTAL VALIDATION (Contd.)

T6

d = 0.001990 < 0.025
s = 0.001080 < 0.02

d = 0.001760 < 0.025
s = 0.000970 < 0.02

d = 0.001640 < 0.025
s = 0.001120 < 0.02

AIS 20/31 Intel AMD
Test instructions cpu-cycles instructions cpu-cycles
Procedure A
TO PASS PASS PASS PASS
T1 PASS PASS PASS PASS
T2 PASS PASS PASS PASS
T3 PASS PASS PASS PASS
T4 PASS PASS PASS PASS
T5 PASS PASS PASS PASS
Procedure B
PASS PASS PASS PASS

d = 0.001790 < 0.025
s = 0.000560 < 0.02

T7

PASS
s1 = 0.008000 < 15.13
s2 = 0.050002 < 15.13

PASS
s1 = 0.079000 < 15.13
s2 = 0.047869 < 15.13

PASS
s1 = 0.010000 < 15.13
sg = 0.049847 < 15.13

PASS
s1 = 0.047000 < 15.13
s2 = 0.069748 < 15.13

T8

PASS
s = 8.109696 > 7.976

PASS
s = 10.479683 > 7.976

PASS
s = 8.214734 > 7.976

PASS
s = 9.975684 > 7.976

Table: AIS 20/31 Test Results on TRNG Output for Different HPC Events on two different processors




EXPERIMENTAL VALIDATION (Contd.)

»* Perturbation in TRNG Output in presence of an Adversary

Adversarial
manipulation
hampers the
instruction counts

but does not have
any impact on the
entropy of the least
significant bits of the
counter values

Reason: inherent chaos of a large
number of concurrent process
executions and optimization
constructs of the Operafing System
and their effect on the underlying
computer architecture modules

Atftack scenario: An adversary
running on the same processor
core as the TRNG module can
modify these HPC values in
regular time intervals



EXPERIMENTAL VALIDATION (Contd.)

“* Perturbation in TRNG Output in presence of an Adversary

NIST Test AIS 20/31 Tests
Frequency PASS Procedure A
BlockFrequency PASS||TO PASS
CumulativeSums PASS||T1 PASS
Runs PASS||T2 PASS
LongestRun PASS||T3 PASS
Rank PASS||T4 PASS
FFT PASS||T5 PASS
NonQuverlapping Template |PASS Procedure B
Owverlapping Template  |PASS PASS
Universal PASS||T6| d = 0.003479 < 0.025
ApprozimateEntropy  |PASS s = 0.002547 < 0.02
RandomEzrcursions PASS PASS
RandomFExcursionsVariant|PASS||T7|s; = 0.008429 < 15.13
Serial PASS s2 = 0.094531 < 15.13
. . PASS
LinearComplexity PASS||T8 s — 8.047369 > 7.976

Table: NIST and AIS 20/31 Test results on TRNG Output for the HPC
event instructions on Intel processor after adversarial modiPcation




Hybrid Construction to Enhance Throughput

« Secured Hash implementation using Keccak Aftor 10mms
) er 10ms:
algorithm 1. SRTRNG > 9
Proposed deS|gn Considers Only -I-he |OS.I. 9 2. 9 random bits are added to SR_TRNG

Rk . . — 3. Count = 0 )
t bits from the LSB at a periodic o fandon 71 63 2 10
inferval of T0ms T ] ot
Lo’rdncy g.fT | Qms of the gepero’rion of 9 SR_TRNG [Count : Count +63] ot = 0 [Comtral Blok
om bIts Is iInappropriate Sebit it -
. . \ . Keccak Algorithm
Solution: Hybrid model which uses a shift 512_£it - ’ Count++
régister, the Keccak algorithm, and a control v et
. B . . Internal Random Numbers ew Random
lock by considering the random bits obtained Number
rom HPCs as IﬂpUT. Fig: Hybrid Construction for generating internal random numbers

« Operational Modes: Initialization and Generation
« Maximum Throughput: 46,080 bits per second (or 45 Kbps)



Results for the Hybrid Construction

NIST Test AlS 20/31 Tests
Frequency PASS Procedure A
BlockFrequency PASS||'T0 PASS
CumulativeSums PASS||T1 PASS
Runs PASS||T2 PASS
LongestRun PASS||T3 PASS
Rank PASS||T4 PASS
FET PASS||TH PASS
NonOverlapping Template |PASS Procedure B
Overlapping Template  |PASS PASS
Universal PASS||T6| d = 0.004060 < 0.025
ApproximateFniropy PASS s = 0.005410 < 0.02
RandomFExzcursions PASS PASS
RandomFEzcursions Variant| PASS||T7|s1 = 0.499285 < 15.13
Serial PASS so = 0.612501 < 15.13
. . o PASS
LinearComplexity PASS||T8 s — 8107012 > 7.976

Table: NIST and AIS 20/31 Test results on TRNG Output for the HPC event instructions on Intel
processor obtained from the hybrid construction




Comparing to Linux's RNG

, , , NIST Test Intel[AMD
Linux based systems have special character file ' Frequency FAIL | FAIL
/dev/urandom providing an interface to the kernel's BlockFrequency FAIL| FAIL
random number generator. CumnulativeSums FAIL| FAIL
Runs FAIL| FAIL

r, several weaknesses of such random number
) g ; LongestRun FAIL | FAIL
gengrafion is already reported in [Gutterman ef. al.; S&P ok AT FAILL
FFT FAIL| FAIL
order to stress the weakness, we collected random data | YenverlappingTemplate |FAIL| FAIL

using /dev/urandom and applied NIST Test suite on the OverlappingTemplate  |FAIL| FAIL

ot Universal FAIL| FAIL
ouTpu ApprommateEniropy FAIL | FAIL
Thus our proposed approach can be used as a TRNG RendomBrcursions | FAIL| FAIL

source in modern Linux based systems as an alternative to  [RandomEzcursions Variant| FAIL | FAIL

- Sertal FAIL| FAIL
apparently weaker random numiber generator using LinearComplezity BASS| PASS
/dev/urandom.

Table: NIST test results of Linux /dev/urandom on both Intel and AMD



Summary

v Components of architecture infuse a huge level of randomness because of Operating
System optimization constructs and unpredictability of hardware interrupts.

v Hardware Performance Counters digitize the randomness of the architectural constructs
and various experimental results using standard NIST, and AIS 20/31 Test suites show that
these counters can indeed be considered as a TRNG source.

roposed TRNG construction is robust and fault tolerant in the presence of a powerful
adversary

v' Throughput Enhancement of the design is done by combining the TRNG module with
Keccak hash implementation and a shift register to design a hybrid module which also
qualifies NIST and AIS 20/31 Tests.
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