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Introduction2

 TRNGs are essential building blocks of modern embedded 

security systems

 Enables various cryptographic algorithms, protocols and 

secured implementations

 True randomness cannot be obtained via computational 

methods

 TRNGs derive its randomness from physical parameters

 Security relies on the unpredictability and uniformity of the 

random numbers 
Image Source: Google Image



Generic Architecture of a TRNG3

Total Failure 

Tests
Alarms

• Entropy/ Noise Source: The only 

component with non-deterministic 
behaviour

• Digitization Module: Converts analog 

signals into a digital form

• Post-processing: Improves the statistical 

and security characteristics of the raw 
random numbers

• Online tests: Detects failure in 

generating raw random numbers

• Total Failure Tests: Implemented for the 

fast detection of the total breakdown of 
the entropy source



Traditional TRNG Designs4

Thermal noise, also known as Johnson–Nyquist noise [68], is intrinsic electronic noise which occurs 

regardless of any applied voltage. 

[1] A low power, low voltage Truly Random Number Generator (TRNG) for EPC Gen2 RFID tag was 

proposed and realized in in SMIC 0.18 µm standard CMOS process

[4] Presents the design of a mixed-signal RNG IC suitable for integration with hardware cryptographic 

systems

Metastability is the most commonly used entropy source for both FPGA and ASIC TRNGs. TRNGs of this 

type rely on the circuit symmetry to achieve unbiased outputs. 

[3] Utilizes the write collisions in Block Memory (BRAM)s of TRNGs as entropy sources. Due to the lack of 

the low-level understanding of BRAM, as it is a company secret, it is almost impossible to characterize 

the randomness-generating process and to evaluate its security.

[5] The last passage time of ring oscillators is utilized as the entropy source. Fabricated in 0.13-μm 

CMOS technology

Timing Jitter is defined as the deviation from a periodic signal, such as a reference clock signal

[2] Exploits the jitter of events propagating in a self-timed ring (STR) to generate random bit 

sequences at a very high bit rate. Implemented using Altera and Xilinx FPGA

[6]TRNG based on high-precision edge sampling. Implemented using Xilinx Spartan 6 and Intel 

Cyclone V FPGAs

 Source of Randomness: 

Underlying Hardware 

Architectural Events

 No external hardware i.e. 

SoC design

OUR WORK

CMOS Designs:

• Not preferred 

for high speed 

applications

• Not easily 

portable to 

FPGA families



5

TRNGs implemented using external hardware are susceptible to physical attacks

[7] Presents a contactless and local active attack on ring oscillators (ROs) based TRNGs using electromagnetic 

fields. It is possible to lock them on the injected signal and thus to control the monobit bias of the TRNG output 

even when low power electromagnetic fields are exploited

[8] A frequency injection attack which is able to destroy the source of entropy in ring-oscillator-based true random 

number generators (TRNGs). 

On- the fly testing of TRNGs
A design methodology for embedded tests of entropy sources.

[9] The proposed solution uses canary numbers which are an extra output 

of the entropy source of lower quality. This enables an early-warning attack 

detection before the output of the generator is compromised. 

[10] Design of on-the-fly tests based on the attack effects. Uses an 

empirical design methodology consisting of two phases: collecting the 

data under attack and finding a useful statistical feature. 

 It would be desirable 
to develop TRNG 
sources which are 
available to a 
program without 
resorting to an external 
component

 In-situ TRNG design 
would also make 
physical attacks more 
challenging



NIST SP 800-22 STATISTICAL TEST SUITE6



AIS 20/31 TESTS7



Contributions

 TRNG derived from computer architecture, which thrives on the 

randomness observed through the Hardware Performance Counters. HPC 

event counters provide a cumulative count to the architectural events and 

thus proposed to be a high source of entropy.

 It was also observed that the randomness was highest in the Least 

Significant bits (LSBs) for the observed values from these counters. 

 These event counter statistics over the monitored application along with 

the background noise can only be observed at periodic intervals. In order 

to increase the throughput of the overall random number generation, we 

pair the proposed TRNG with a secured hash implementation using the 

Keccak algorithm.
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• Set of special purpose registers, present in most of microprocessor’s 

Performance Monitoring Unit(PMU)

• Store hardware and software events related to the execution of a program, 

such as cache misses, retired instructions, retired branch instructions, etc.

• Type and number of hardware interrupts vary across different Instruction Set 

Architectures(ISA)

• Various open-source tools can measure this HPC values: perf tools, PAPI, 

Oprofile, Valgrind and many more

Hardware Performance counters9



COMMAND LINE LINUX TOOLS

• perf : accesses and reads the HPC registers through the perf 

event system call for Linux versions above 2.6.31. 

Syntax:

perf stat -e <event name> -I <interval duration> 
<executable name>

• mpstat:  a utility that collects and displays information about 

CPU utilization and performance statistics.

/proc/interrupts records the number of interrupts per 

IRQ on the x86 architecture.

• taskset: sets or retrieves the CPU affinity of a running process 

given its PID (Process ID)

Image Source: Google Images
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• An infinite loop C code snippet was taken 

and allowed to run indefinitely

• Various event counts such as instructions, 

bus-cycles etc. were observed

• Measured the total number of interrupts 

received per second

(Note: The experiment was  performed on 

a per-core approach)

Event 

count

Event name

Monitoring the HPCs11



NON-DETERMINISM IN HPCs

Source of Non-

Determinism:

Hardware Interrupts

Observation: The number of 

instructions and the number 

of CPU cycles is not constant 

over time

Fig: Performance counter events (i) instruction and (ii) cpu-cycles over the executable of infinite 

loop with 10ms∗ interval of time 

Ideal case: The HPC events 

instructions and cpu-cycles 

should report constant 

values over the duration of 

time

Significant amount of non-determinism is exhibited by these performance counters

12



EFFECT OF HARDWARE INTERRUPTS ON 
HPC EVENTS

Fig: Effect of hardware interrupts on the HPC events (i) instructions and (ii) cpu-

cycles monitored over an infinite loop on different time instances

Observation:

Whenever there is a surge 

in the number of 

interrupts, the count of 

the events also increase

Validation: 
There exists an association 

between hardware interrupts 

and HPC events. 
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There are several types of interrupts affecting these HPC events such as Local 

Timer Interrupts (LOC), IRQ Work Interrupts (IWI), Rescheduling Interrupts (RES), 

Function Call Interrupts (CAL), and TLB Shootdowns (TLB). 

The effect of these interrupts can be monitored eciently using /proc/interrupts



PROPOSED TRNG DESIGN
14



RANDOMNESS EXTRACTION USING HPCS

• Observed 500,000 instances of the performance counter events instructions and cpu-

cycles, and calculated the entropy for each bit position.

• Entropy of each bit position is not same for the binary sequences of the monitored 

values

• Entropy is highest with LSB while MSB is highly predictable

• Transformation of the data to binary sequences and considered the last 9† bits for 

further analysis

†: We empirically selected last 9 least significant bits for our experimental setup as for most of the events the last 9 bits 

provide highest entropy values

Selection of Least Significant Bits
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Fig: Entropy of each LSBs for HPC event (i) instructions, and (ii) cpu-cycles

Selection of Least Significant Bits(Contd.)

LSBs have the 

highest 

entropy, and 

as we move 

towards the 

MSBs, the 

entropy gets 

reduced

Choosing bits from the LSB16



Selection of HPC events using Yao’s Next-Bit Test

• In order to estimate the probability, N sequences of an HPC event at N successive 

intervals of time were considered

• Given first m-bits of the n possible bits for any sequence S(n, t), i.e., the sequence 

S(m, t) is already given (where m < n)

• According to Yao’s Next Bit test, 

• No. of possibilities for S(m,t)= 2𝑚

Next-bit Test for HPC events17

The sequence S(n, t) has no bias if probability of the (𝑚 + 1)𝑡ℎ bit being zero 

is 0.5±δ (i.e., [𝑃𝑟𝑚
𝑡 =0]= 0.5 ± δ), given the knowledge of S(m,t), when δ is 

negligible (with respect to the security parameter). 



Selection of HPC events using Yao’s Next-Bit Test (Contd.)

Table: Next-bit test for different HPC events for m = 4 
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• Consider the case m=4, i.e. first 4 bits 

of the binary sequence is known

• Observed N = 500,000 values for the 

events and estimated the 

probability

• If the first 4 bits are 0000, then the 

estimated probability that the next 

bit will be 0 is 0.499362 with a bias of 

0.000638

2⁴ possible 

combinations

Events instructions and cpu-cycles can act 

as better candidate for source of 

randomness 



Results on TRNG output obtained from HPC Events 

• Experiments were conducted on 

two different processors

• Access to HPC events is available 

to users with administrative 

privilege

• Primitive events such as instructions, cpu-cycles, bus-cycles, cache-misses, branches

etc. were considered.

Table: Experimental Setup for Validation of the proposed claim 

Experimental Validation19



EXPERIMENTAL VALIDATION(Contd.) 

Table: NIST Test Results on TRNG Output for Different HPC Events on two different processors
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EXPERIMENTAL VALIDATION (Contd.) 

Table: AIS 20/31 Test Results on TRNG Output for Different HPC Events on two different processors 
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EXPERIMENTAL VALIDATION (Contd.) 
Perturbation in TRNG Output in presence of an Adversary 

Attack scenario: An adversary 
running on the same processor 
core as the TRNG module can 

modify these HPC values in 
regular time intervals

Observation: 
Adversarial 
manipulation 
hampers the 
instruction counts 
but does not have 
any impact on the 
entropy of the least 
significant bits of the 
counter values

Reason: inherent chaos of a large 
number of concurrent process 
executions and optimization 

constructs of the Operating System 
and their effect on the underlying 
computer architecture modules

ADMIN
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EXPERIMENTAL VALIDATION (Contd.) 
Perturbation in TRNG Output in presence of an Adversary

Table: NIST and AIS 20/31 Test results on TRNG Output for the HPC 

event instructions on Intel processor after adversarial modification 
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Fig: Hybrid Construction for generating internal random numbers

• Secured Hash implementation using Keccak 

algorithm

• Proposed design considers only the last 9 

significant bits from the LSB at a periodic 

interval of 10ms

• Latency of 10ms of the generation of 9 

random bits is inappropriate

Solution: Hybrid model which uses a shift 

register,   the Keccak algorithm, and a control 

block by considering the random bits obtained 

from HPCs as input. 

• Operational Modes:  Initialization and Generation

• Maximum Throughput: 46,080 bits per second (or 45 Kbps)

Hybrid Construction to Enhance Throughput24



Results for the Hybrid Construction

Table: NIST and AIS 20/31 Test results on TRNG Output for the HPC event instructions on Intel 

processor obtained from the hybrid construction 
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Comparing to Linux’s RNG

 Linux based systems have special character file 
/dev/urandom providing an interface to the kernel's 
random number generator. 

 However, several weaknesses of such random number 
generation is already reported in [Gutterman et. al.; S&P 
2006]. 

 In order to stress the weakness, we collected random data 
using /dev/urandom and applied NIST Test suite on the 
output

 Thus our proposed approach can be used as a TRNG 
source in modern Linux based systems as an alternative to 
apparently weaker random number generator using 
/dev/urandom. 
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Table: NIST test results of Linux /dev/urandom on both Intel and AMD 



 Components of architecture infuse a huge level of randomness because of Operating 

System optimization constructs and unpredictability of hardware interrupts.

 Hardware Performance Counters digitize the randomness of the architectural constructs 

and various experimental results using standard NIST, and AIS 20/31 Test suites show that 

these counters can indeed be considered as a TRNG source.

 Proposed TRNG construction is robust and fault tolerant in the presence of a powerful 

adversary

 Throughput Enhancement of the design is done by combining the TRNG module with 

Keccak hash implementation and a shift register to design a hybrid module which also 

qualifies NIST and AIS 20/31 Tests.

Summary27
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