
In-situ Extraction of Randomness from Computer

Architecture through Hardware Performance Counters

Introduction2

 TRNGs are essential building blocks of modern embedded

security systems

 Enables various cryptographic algorithms, protocols and

secured implementations

 True randomness cannot be obtained via computational

methods

 TRNGs derive its randomness from physical parameters

 Security relies on the unpredictability and uniformity of the

random numbers
Image Source: Google Image

Generic Architecture of a TRNG3

Total Failure

Tests
Alarms

• Entropy/ Noise Source: The only

component with non-deterministic
behaviour

• Digitization Module: Converts analog

signals into a digital form

• Post-processing: Improves the statistical

and security characteristics of the raw
random numbers

• Online tests: Detects failure in

generating raw random numbers

• Total Failure Tests: Implemented for the

fast detection of the total breakdown of
the entropy source

Traditional TRNG Designs4

Thermal noise, also known as Johnson–Nyquist noise [68], is intrinsic electronic noise which occurs

regardless of any applied voltage.

[1] A low power, low voltage Truly Random Number Generator (TRNG) for EPC Gen2 RFID tag was

proposed and realized in in SMIC 0.18 µm standard CMOS process

[4] Presents the design of a mixed-signal RNG IC suitable for integration with hardware cryptographic

systems

Metastability is the most commonly used entropy source for both FPGA and ASIC TRNGs. TRNGs of this

type rely on the circuit symmetry to achieve unbiased outputs.

[3] Utilizes the write collisions in Block Memory (BRAM)s of TRNGs as entropy sources. Due to the lack of

the low-level understanding of BRAM, as it is a company secret, it is almost impossible to characterize

the randomness-generating process and to evaluate its security.

[5] The last passage time of ring oscillators is utilized as the entropy source. Fabricated in 0.13-μm

CMOS technology

Timing Jitter is defined as the deviation from a periodic signal, such as a reference clock signal

[2] Exploits the jitter of events propagating in a self-timed ring (STR) to generate random bit

sequences at a very high bit rate. Implemented using Altera and Xilinx FPGA

[6]TRNG based on high-precision edge sampling. Implemented using Xilinx Spartan 6 and Intel

Cyclone V FPGAs

 Source of Randomness:

Underlying Hardware

Architectural Events

 No external hardware i.e.

SoC design

OUR WORK

CMOS Designs:

• Not preferred

for high speed

applications

• Not easily

portable to

FPGA families

5

TRNGs implemented using external hardware are susceptible to physical attacks

[7] Presents a contactless and local active attack on ring oscillators (ROs) based TRNGs using electromagnetic

fields. It is possible to lock them on the injected signal and thus to control the monobit bias of the TRNG output

even when low power electromagnetic fields are exploited

[8] A frequency injection attack which is able to destroy the source of entropy in ring-oscillator-based true random

number generators (TRNGs).

On- the fly testing of TRNGs
A design methodology for embedded tests of entropy sources.

[9] The proposed solution uses canary numbers which are an extra output

of the entropy source of lower quality. This enables an early-warning attack

detection before the output of the generator is compromised.

[10] Design of on-the-fly tests based on the attack effects. Uses an

empirical design methodology consisting of two phases: collecting the

data under attack and finding a useful statistical feature.

 It would be desirable
to develop TRNG
sources which are
available to a
program without
resorting to an external
component

 In-situ TRNG design
would also make
physical attacks more
challenging

NIST SP 800-22 STATISTICAL TEST SUITE6

AIS 20/31 TESTS7

Contributions

 TRNG derived from computer architecture, which thrives on the

randomness observed through the Hardware Performance Counters. HPC

event counters provide a cumulative count to the architectural events and

thus proposed to be a high source of entropy.

 It was also observed that the randomness was highest in the Least

Significant bits (LSBs) for the observed values from these counters.

 These event counter statistics over the monitored application along with

the background noise can only be observed at periodic intervals. In order

to increase the throughput of the overall random number generation, we

pair the proposed TRNG with a secured hash implementation using the

Keccak algorithm.

8

• Set of special purpose registers, present in most of microprocessor’s

Performance Monitoring Unit(PMU)

• Store hardware and software events related to the execution of a program,

such as cache misses, retired instructions, retired branch instructions, etc.

• Type and number of hardware interrupts vary across different Instruction Set

Architectures(ISA)

• Various open-source tools can measure this HPC values: perf tools, PAPI,

Oprofile, Valgrind and many more

Hardware Performance counters9

COMMAND LINE LINUX TOOLS

• perf : accesses and reads the HPC registers through the perf

event system call for Linux versions above 2.6.31.

Syntax:

perf stat -e <event name> -I <interval duration>
<executable name>

• mpstat: a utility that collects and displays information about

CPU utilization and performance statistics.

/proc/interrupts records the number of interrupts per

IRQ on the x86 architecture.

• taskset: sets or retrieves the CPU affinity of a running process

given its PID (Process ID)

Image Source: Google Images

10

• An infinite loop C code snippet was taken

and allowed to run indefinitely

• Various event counts such as instructions,

bus-cycles etc. were observed

• Measured the total number of interrupts

received per second

(Note: The experiment was performed on

a per-core approach)

Event

count

Event name

Monitoring the HPCs11

NON-DETERMINISM IN HPCs

Source of Non-

Determinism:

Hardware Interrupts

Observation: The number of

instructions and the number

of CPU cycles is not constant

over time

Fig: Performance counter events (i) instruction and (ii) cpu-cycles over the executable of infinite

loop with 10ms∗ interval of time

Ideal case: The HPC events

instructions and cpu-cycles

should report constant

values over the duration of

time

Significant amount of non-determinism is exhibited by these performance counters

12

EFFECT OF HARDWARE INTERRUPTS ON
HPC EVENTS

Fig: Effect of hardware interrupts on the HPC events (i) instructions and (ii) cpu-

cycles monitored over an infinite loop on different time instances

Observation:

Whenever there is a surge

in the number of

interrupts, the count of

the events also increase

Validation:
There exists an association

between hardware interrupts

and HPC events.

13

There are several types of interrupts affecting these HPC events such as Local

Timer Interrupts (LOC), IRQ Work Interrupts (IWI), Rescheduling Interrupts (RES),

Function Call Interrupts (CAL), and TLB Shootdowns (TLB).

The effect of these interrupts can be monitored eciently using /proc/interrupts

PROPOSED TRNG DESIGN
14

RANDOMNESS EXTRACTION USING HPCS

• Observed 500,000 instances of the performance counter events instructions and cpu-

cycles, and calculated the entropy for each bit position.

• Entropy of each bit position is not same for the binary sequences of the monitored

values

• Entropy is highest with LSB while MSB is highly predictable

• Transformation of the data to binary sequences and considered the last 9† bits for

further analysis

†: We empirically selected last 9 least significant bits for our experimental setup as for most of the events the last 9 bits

provide highest entropy values

Selection of Least Significant Bits

15

Fig: Entropy of each LSBs for HPC event (i) instructions, and (ii) cpu-cycles

Selection of Least Significant Bits(Contd.)

LSBs have the

highest

entropy, and

as we move

towards the

MSBs, the

entropy gets

reduced

Choosing bits from the LSB16

Selection of HPC events using Yao’s Next-Bit Test

• In order to estimate the probability, N sequences of an HPC event at N successive

intervals of time were considered

• Given first m-bits of the n possible bits for any sequence S(n, t), i.e., the sequence

S(m, t) is already given (where m < n)

• According to Yao’s Next Bit test,

• No. of possibilities for S(m,t)= 2𝑚

Next-bit Test for HPC events17

The sequence S(n, t) has no bias if probability of the (𝑚 + 1)𝑡ℎ bit being zero

is 0.5±δ (i.e., [𝑃𝑟𝑚
𝑡 =0]= 0.5 ± δ), given the knowledge of S(m,t), when δ is

negligible (with respect to the security parameter).

Selection of HPC events using Yao’s Next-Bit Test (Contd.)

Table: Next-bit test for different HPC events for m = 4

18

• Consider the case m=4, i.e. first 4 bits

of the binary sequence is known

• Observed N = 500,000 values for the

events and estimated the

probability

• If the first 4 bits are 0000, then the

estimated probability that the next

bit will be 0 is 0.499362 with a bias of

0.000638

2⁴ possible

combinations

Events instructions and cpu-cycles can act

as better candidate for source of

randomness

Results on TRNG output obtained from HPC Events

• Experiments were conducted on

two different processors

• Access to HPC events is available

to users with administrative

privilege

• Primitive events such as instructions, cpu-cycles, bus-cycles, cache-misses, branches

etc. were considered.

Table: Experimental Setup for Validation of the proposed claim

Experimental Validation19

EXPERIMENTAL VALIDATION(Contd.)

Table: NIST Test Results on TRNG Output for Different HPC Events on two different processors

20

EXPERIMENTAL VALIDATION (Contd.)

Table: AIS 20/31 Test Results on TRNG Output for Different HPC Events on two different processors

21

EXPERIMENTAL VALIDATION (Contd.)
Perturbation in TRNG Output in presence of an Adversary

Attack scenario: An adversary
running on the same processor
core as the TRNG module can

modify these HPC values in
regular time intervals

Observation:
Adversarial
manipulation
hampers the
instruction counts
but does not have
any impact on the
entropy of the least
significant bits of the
counter values

Reason: inherent chaos of a large
number of concurrent process
executions and optimization

constructs of the Operating System
and their effect on the underlying
computer architecture modules

ADMIN

22

EXPERIMENTAL VALIDATION (Contd.)
Perturbation in TRNG Output in presence of an Adversary

Table: NIST and AIS 20/31 Test results on TRNG Output for the HPC

event instructions on Intel processor after adversarial modification

23

Fig: Hybrid Construction for generating internal random numbers

• Secured Hash implementation using Keccak

algorithm

• Proposed design considers only the last 9

significant bits from the LSB at a periodic

interval of 10ms

• Latency of 10ms of the generation of 9

random bits is inappropriate

Solution: Hybrid model which uses a shift

register, the Keccak algorithm, and a control

block by considering the random bits obtained

from HPCs as input.

• Operational Modes: Initialization and Generation

• Maximum Throughput: 46,080 bits per second (or 45 Kbps)

Hybrid Construction to Enhance Throughput24

Results for the Hybrid Construction

Table: NIST and AIS 20/31 Test results on TRNG Output for the HPC event instructions on Intel

processor obtained from the hybrid construction

25

Comparing to Linux’s RNG

 Linux based systems have special character file
/dev/urandom providing an interface to the kernel's
random number generator.

 However, several weaknesses of such random number
generation is already reported in [Gutterman et. al.; S&P
2006].

 In order to stress the weakness, we collected random data
using /dev/urandom and applied NIST Test suite on the
output

 Thus our proposed approach can be used as a TRNG
source in modern Linux based systems as an alternative to
apparently weaker random number generator using
/dev/urandom.

26

Table: NIST test results of Linux /dev/urandom on both Intel and AMD

 Components of architecture infuse a huge level of randomness because of Operating

System optimization constructs and unpredictability of hardware interrupts.

 Hardware Performance Counters digitize the randomness of the architectural constructs

and various experimental results using standard NIST, and AIS 20/31 Test suites show that

these counters can indeed be considered as a TRNG source.

 Proposed TRNG construction is robust and fault tolerant in the presence of a powerful

adversary

 Throughput Enhancement of the design is done by combining the TRNG module with

Keccak hash implementation and a shift register to design a hybrid module which also

qualifies NIST and AIS 20/31 Tests.

Summary27

References

1. Chen, W., Che, W., Bi, Z., Wang, J., Yan, N., Tan, X., Wang, J., Min, H., Tan, J.: A 1.04 µW truly random number generator for
Gen2 RFID tag. In: 2009 IEEE Asian Solid-State Circuits Conference. pp. 117–120. IEEE (2009)

2. Cherkaoui, A., Fischer, V., Fesquet, L., Aubert, A.: A very high speed true random number generator with entropy assessment.
In: International Workshop on Cryptographic Hardware and Embedded Systems. pp. 179–196. Springer (2013)

3. Gu¨neysu, T.: True random number generation in block memories of reconfigurable devices. In: 2010 International
Conference on Field-Programmable Technology. pp. 200–207. IEEE (2010)

4. Petrie, C.S., Connelly, J.A.: A noise-based IC random number generator for applications in cryptography. IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications 47(5), 615–621 (2000)

5. Robson, S., Leung, B., Gong, G.: Truly random number generator based on a ring oscillator utilizing last passage time. IEEE
Transactions on Circuits and Systems II: Express Briefs 61(12), 937–941 (2014)

6. Yang, B., Roˇzic, V., Grujic, M., Mentens, N., Verbauwhede, I.: ES-TRNG: A Highthroughput, Low-area True Random Number
Generator based on Edge Sampling. IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 267– 292
(2018)

7. Bayon, P., Bossuet, L., Aubert, A., Fischer, V., Poucheret, F., Robisson, B., Maurine, P.: Contactless electromagnetic active
attack on ring oscillator based true random number generator. In: International Workshop on Constructive Side-Channel
Analysis and Secure Design. pp. 151–166. Springer (2012)

8. Markettos, A.T., Moore, S.W.: The frequency injection attack on ring-oscillator based true random number generators. In:
Cryptographic Hardware and Embedded Systems-CHES 2009, pp. 317–331. Springer (2009)

9. Roˇzi´c, V., Yang, B., Mentens, N., Verbauwhede, I.: Canary numbers: Design for light-weight online testability of true random
number generators. In: Cryptol. ePrint Arch., NIST RBG Workshop, Gaithersburg, MD, USA, Tech. Rep. vol. 386, p. 2016 (2016)

10. Yang, B., Roˇzi´c, V., Mentens, N., Dehaene, W., Verbauwhede, I.: TOTAL: TRNG on-the-fly testing for attack detection using
lightweight hardware. In: Proceedings of the 2016 Conference on Design, Automation & Test in Europe. pp. 127–132. EDA
Consortium (2016)

28

Thank You!

This work was supported by the Defence

Research and Development Organization
(DRDO) through JCBCAT, Kolkata, India

29

